Slag Characterization and Concrete Durability

Ananya Markandeya^a, Natallia Shanahan^a, Banghao Chen^b, Kyle Riding^c, A. Zayed^a

^aDepartment of Civil and Environmental Engineering, University of South Florida, 4202 E Fowler Ave, ENB 118, Tampa, FL 33620

^bDepartment of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Rm. 118 DLC, Tallahassee, FL 32306

^cDepartment of Civil and Coastal Engineering, University of Florida, 1949 Stadium Road, University of Florida, P.O. Box 116580, Gainsville, FL 32611

Current Specifications for Slag Cement

• ASTM C989 separated slag into 3 grades:

Grade	7-Day Slag Activity Index, min%	28-Day Slag Activity Index, min%
80		75
100	75	95
120	95	115

- Fineness: amount retained on 45 μ m sieve (wet-sieved) \leq 20%
- Air content of slag mortar $\leq 12\%$
- Limit on sulfide content $\leq 2.5\%$

Field Temperature Profiles

Objective: Compare chemical and physical characteristics of granulated blast furnace slag available in the United States and their effect on cracking indices for mass concrete

Reactivity of Ground Granulated Blast Furnace Slag

- Parameters affecting slag reactivity:
 - Elemental oxide composition (CaO/SiO₂ ratio, Al₂O₃, MgO)
 - Mineralogical composition (amorphous vs crystalline content)
 - Blaine fineness / particle size distribution
- Proposed hydraulic moduli from the literature:
 - CaO/SiO₂
 - Al₂O₃/SiO₂
 - (CaO + MgO + AI_2O_3)/SiO₂
 - $(CaO + MgO + 1/3 Al_2O_3)/(2/3 Al_2O_3 + SiO_2)$

As-Received Materials Characterization

- Materials used in this study:
 - 7 slags with variable Al_2O_3 , MgO content, and fineness
 - 2 cements with variable C_3A
- Methodology for as-received materials characterization:
 - X-ray fluorescence (XRF)
 - X-ray diffraction (XRD)
 - 27Al NMR (slag only)
 - Blaine fineness
 - Particle size analysis

Concrete Mixture Proportions

Material	Control A/B	Slag mixes
Cement (kg)	395	158
Slag (kg)	0	237
Coarse aggregate (SSD) (kg)	1047	1047
Fine aggregate (SSD) (kg)	696	696
Air-entrainer (ml/100 kg)	6.5	6.5
w/b	0.385	0.385

*Superplasticizer dosage was adjusted to maintain workability w/b= water/binder

Methodology for Performance Assessment

- Isothermal calorimetry at 30°C
 - TAM Air 8-channel calorimeter, internal mixing
- Semi-adiabatic calorimetry
- Rigid cracking frame (RCF)
- Free shrinkage frame (FSF)
- Nitrogen adsorption porosity measurements

Rigid Cracking Frame

- Center cross section of concrete specimen: 100 x 100 mm
- Length: 1041 mm
- Frame is insulated
- Connected to a programmable water bath

Thermal Cracking Potential

Cracking Indices:

- T_z 2nd zero stress temperature
- t_z 2nd zero stress time
- T_{cr} cracking temperature
- t_{cr} cracking time

Slag Chemical, Physical and Mineralogical Analyses

	S8	S8F	S11F	S11C	S14	S14S	S16
CaO	38.11	39.52	41.93	37.41	41.06	41.48	37.98
SiO ₂	38.59	38.61	35.67	36.15	35.44	33.7	32.86
Al ₂ O ₃	8.09	7.73	10.82	10.71	14.25	13.67	16.29
MgO	10.83	10.40	7.9	11.27	5.25	5.33	8.88
SO ₃	2.21	2.25	1.91	2.33	1.99	3.02	2.61
Na ₂ O _{eq}	0.55	0.51	0.44	0.51	0.40	0.42	0.66
CaO/SiO ₂	0.99	1.02	1.18	1.03	1.16	1.23	1.16
Amorphous content	98.9	98.6	98.8	98.3	97.0	97.6	99.0
Mean particle size (µm)	9.2	8.0	8.4	10.9	11.2	12.3	11.8
Blaine fineness (m ² /kg)	642	698	680	589	574	595	466

27Al NMR Results

Cement Physical and Mineralogical Analyses

	Cement A	Cement B
Alite	48.1	54.0
Belite	23.1	17.3
C ₃ A	5.5	8.4
Ferrite	9.9	5.6
Gypsum	2.6	4.3
Hemihydrate	1.5	1.4
Na ₂ O _{eq}	0.35	0.39
Blaine fineness (m ² /kg)	485	474

Isothermal Calorimetry

Temperature and Stress Development with Cement A

SOUTH FLORIDA.

Free Deformation

UNIVERSITY OF SOUTH FLORIDA.

Pore Size Distribution

SOUTH FLORIDA.

Effect of Fineness

MPS: S11F – 8.4 μm S11C – 10.9 μm

Effect of Fineness

MPS: S16 – 11.8 μm S16G – 4.8 μm

Cracking Indices – Cement A Mixes

Mix #	Tz (°C)	Tcr (°C)
Control A	49.6	21.6
60S8-A	35.9	10.5
60S8F-A	36.1	13.5
60S11C-A	37.4	10.2
60S11F-A	41.3	15.8
60S14-A	43.4	16.3
60S14S-A	42.2	15.4
60S16-A	41.6	15.0
60S16G-A	44.7	21.6

Cracking Indices – Cement B Mixes

Mix #	Tz (°C)	Tcr (°C)
Control B	55.9	24.6
60S8-B	38.3	7.9
60S11C-B	38.7	10.8
60S11F-B	43.7	18.9
60S14-B	44.6	17.7
60S16-B	46.4	19.1

Material Property-Performance Relationship

SOUTH FLORIDA

Material Property-Performance Relationship

SOUTH FLORIDA.

Material Property-Performance Relationship

UNIVERSITY OF SOUTH FLORIDA

Summary

- Cement replacement with 60% slag reduced temperature rise and improved cracking resistance regardless of slag composition compared to the control
- However, cracking potential (in terms of RCF indices) varied between different slags
- Al₂O₃ and MgO content as well as fineness were identified as slag parameters affecting cracking potential
- Increasing MgO/Al₂O₃ ratio decreased T_z, which indicates an improvement in cracking resistance
- In addition to MgO/Al_2O_3 ratio, T_{cr} was affected by slag fineness
- Increasing MgO/Al₂O₃*MPS decreased T_{cr}, also indicating an improvement in cracking resistance

Acknowledgements

The authors would like to thank the Florida Department of Transportation and Federal Highway Administration for providing partial funding for this work.

The opinions, findings, and conclusions expressed in this publication are those of the authors and not necessarily those of the Florida Department of Transportation or the US Department of Transportation

Mechanical properties

Temperature and stress development with Cement A

Temperature and stress development with Cement A

Field temperature profiles

Temperature and Stress Development with Cement B

SOUTH FLORIDA.

Semi-Adiabatic Calorimeter

Rigid Cracking Frame

Free Shrinkage Frame

27Al NMR Results

SOUTH FLORIDA.