Investigation of Autoclave Methods for Determining Alkali-Silica Reactivity of Concrete Aggregates

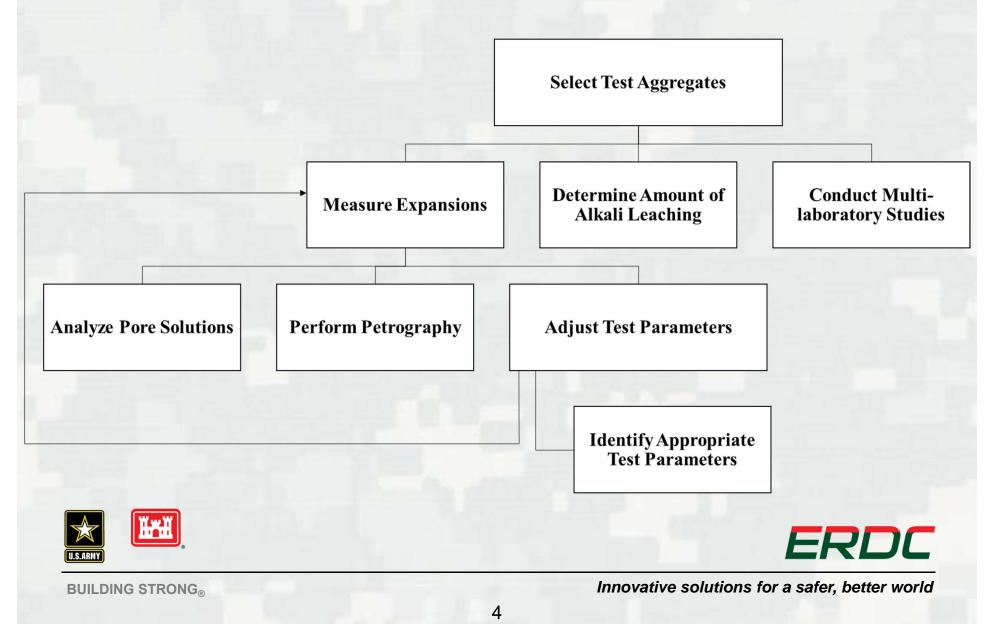
Stephanie G. Wood, PhD

Research Civil Engineer Geotechnical and Structures Laboratory (GSL) 16 Nov 2017

Autoclave Test Methods

Test Parameter	Chinese Autoclave Method (1983)	GBRC (1987)	Nishibayashi et al. (1987)	Laval/ CANMET (1991)	Nishibayashi et al. (1996)	ACPT (2013)
Duration (from mixing)	3 days	3 days	2 days	3 days	unknown	4 days
Duration of Conditioning	6 hours	2 hours	4 to 5 hours	5 hours	4 hours	24 hours
Specimen Type	Mortar	Mortar	Mortar	Mortar	Concrete	Concrete
Specimen Size, mm	10 x 10 x 40	40 x 40 x 160	40 x 40 x 160	25 x 25 x 285	75 x 75 x 400	75 x 75 x 285
w/cm	0.30	unknown	0.45	0.50	0.54	0.42
Na ₂ O _{eq} , by mass of cement	1.5%	2.5%	1.5%	3.5%	3.0%	3.0%
Temperature	150 °C	111 °C	128 °C	130 °C	133 °C	133 °C
Conditioning	In 10% KOH solution inside autoclave	In boiling water inside pressure vessel	Inside autoclave	Inside autoclave	Inside autoclave	Inside autoclave
Proposed Expansion Limit	-	-	-	0.15%	-	0.08%
BUILDING STRO	DNG®		2	Innovative so	lutions for a safer,	better world

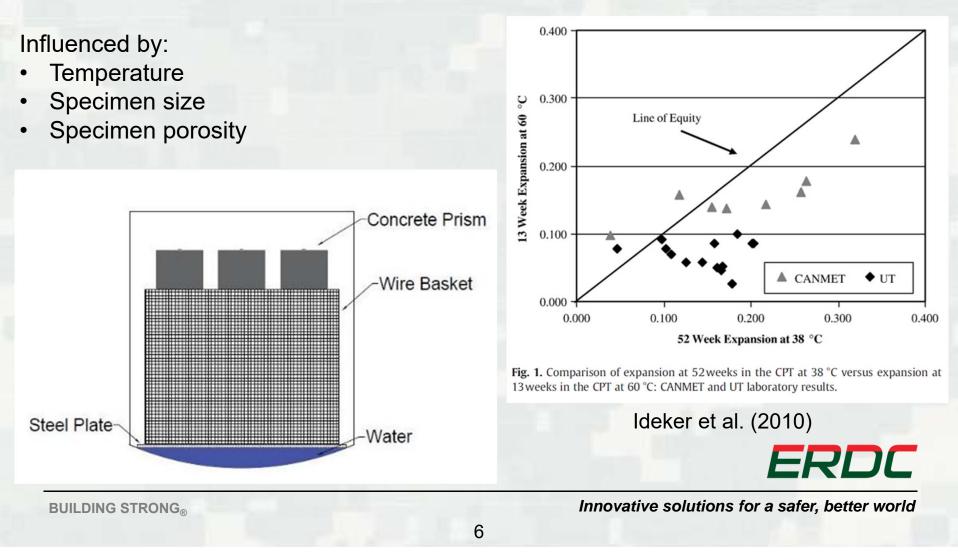
Research Questions


- Are autoclave test methods repeatable?
- How effectively do autoclave methods discriminate between non-reactive and reactive aggregates compared to other standardized test methods?
- Is ASR the cause of expansion in these specimens or is expansion due to some other mechanism?
- Is there a place for autoclave testing in the overall protocol for determining aggregate reactivity?

BUILDING STRONG®

Overview of Research

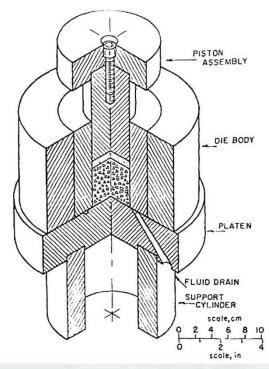
Autoclaving



Innovative solutions for a safer, better world

BUILDING STRONG®

Alkali Leaching


Causes reduced or halted specimen expansion.

Pore Solution

Expression

- ~ 700 MPa
- 200 g sample yields > 6 mL pore solution (> 35% evaporable water)

Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES)

- Na⁺
- K+
- Si⁴⁺
- Ca²⁺
- Al³⁺
- Fe²⁺

Titration to determine pH.

[Na⁺+K⁺] = [OH⁻] in unboosted concrete and in CPT prisms

(Barneyback & Diamond, 1981)

BUILDING STRONG®

Ion Chromatography (IC) to measure $[SO_4^{2-}]$

Innovative solutions for a safer, better world

7

MULTI-LABORATORY STUDY OF FIVE-HOUR AUTOCLAVE TEST (LAVAL/CANMET METHOD)

 Wood, S.G.; Giannini, E.R.; Bentivegna, A.F.; Rashidian, H.D.; Rangaraju P.R.;
Drimalas, T.; Ramsey, M.A.; Johnson, T.R.; Moser, R.D. "Five-Hour Autoclave Test for Determining Potential Alkali-Silica Reactivity of Concrete Aggregates: A Multi-Laboratory Study," *Advances in Civil Engineering Materials*, 2017.

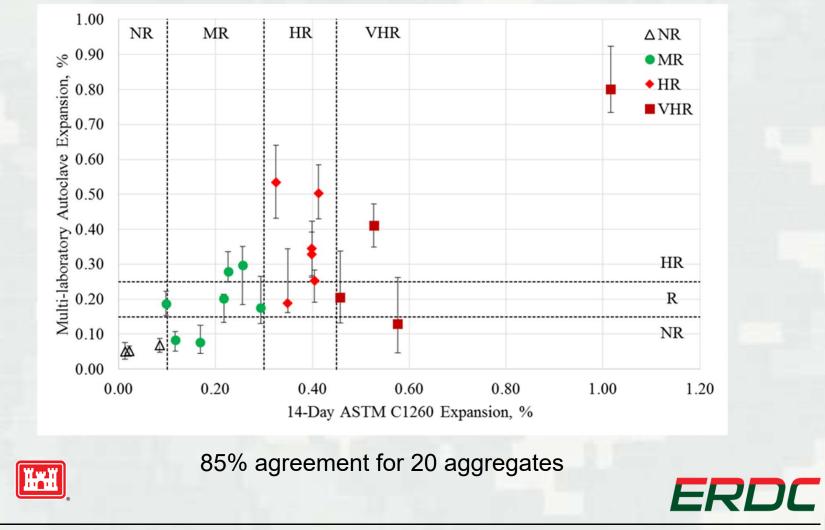
BUILDING STRONG®

Objectives

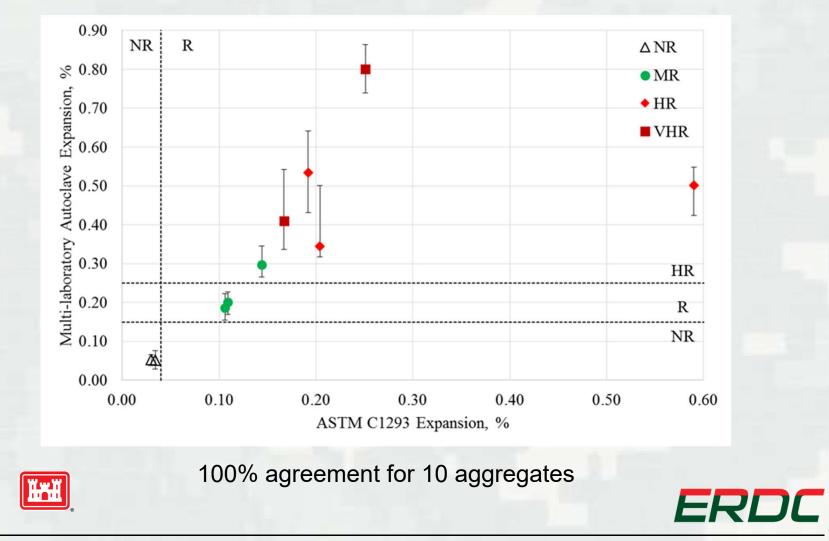
- Determine if the autoclave method is suitable for identification of alkali-silica reactive aggregates used in rapid construction of short-life structures.
- Determine the amount of alkali leaching involved in the test.
- Evaluate variability and repeatability of the test method.

BUILDING STRONG®

Overview of Study


- 20 aggregates
- 1 Type I/II cement 0.52% Na₂O_{eq}
- ASTM C1260 mortar bars but with NaOH to boost Na₂O_{eq} to 3.5%
- Autoclaved for 5 hours at 130 °C (0.17 MPa gauge pressure)
- 5 laboratories
- Reactivity Classifications:
 - NR: Non-reactive
 - MR: Moderately Reactive
 - HR: Highly Reactive
 - VHR: Very Highly Reactive

BUILDING STRONG®


Autoclave vs. ASTM C1260

BUILDING STRONG_®

U.S.ARM

Autoclave vs. ASTM C1293

BUILDING STRONG_®

U.S.ARM

Variability

Test Method	Within-laboratory CV	Multi-laboratory CV
Autoclave	5.9%	20.0%
ASTM C1260 (expansion > 0.10% at 14 days)	2.94%	15.4%
ASTM C1293 (expansion > 0.014%)	12%	23%

Innovative solutions for a safer, better world

BUILDING STRONG®

Alkali Leaching

 $Na_2O_{eq} = (Na \times 1.35) + (1.20 \times K \times 0.658)$

Aggregate	Number of Mortar	Aut Conce	Leached Alkalis,		
	Bars	[Na⁺]	[K+]	[Na ₂ O _{eq}]	%
MR1	4	125	32	193	8.7
MR3	3	94	20	142	8.6
MR4, MR7	7	151	33	230	5.9
HR3	3	83	21	129	7.8
NR1, HR2, HR5	10	291	65	444	8.4
Autoclave	\bigcirc				

BUILDING STRONG®

ERDC

Conclusions

- Autoclave agreement with ASTM C1260 = 85% (20 aggregates)
- Autoclave agreement with ASTM C1293 = 100% (10 aggregates)
- Autoclave within-laboratory CV = 5.9%
- Autoclave multi-laboratory CV = 20.0%
- Alkali leaching 6 to 9%
 - ► ASTM C1293: 12 to 25%

BUILDING STRONG®

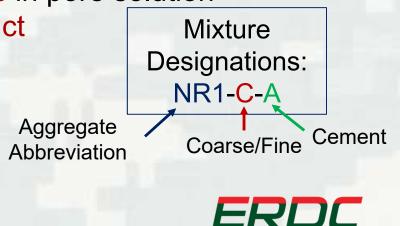
EVALUATION OF THE AUTOCLAVED CONCRETE PRISM TEST (ACPT)

Innovative solutions for a safer, better world

BUILDING STRONG®

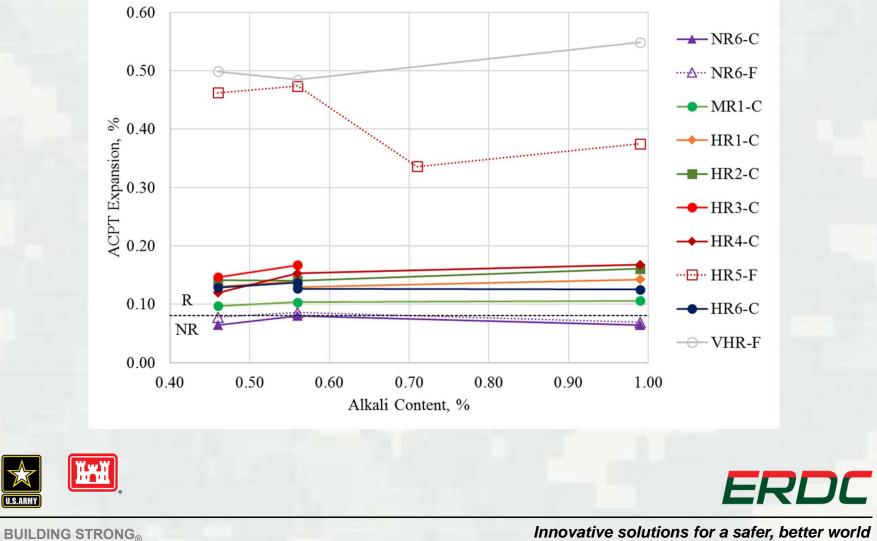
Objectives

- Determine influence of cement alkalinity on expansion
- Evaluate the ACPT in its effectiveness to characterize aggregate reactivity
- Trace migration of alkalis
- Determine mechanism of prism expansion



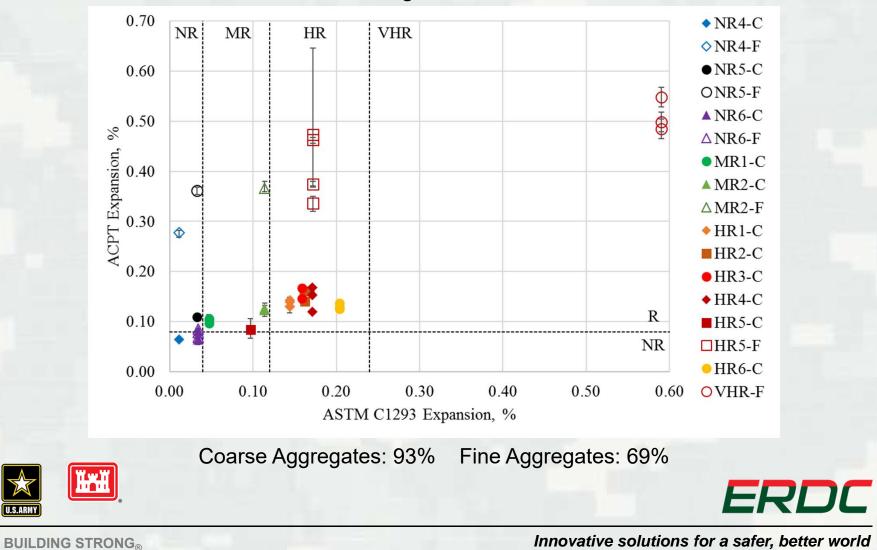
BUILDING STRONG®

Overview of Study


- 22 aggregates
- 4 Type I/II cements (Na₂O_{eq} from 0.46 to 0.99%)
- 55 total tests using sets of 3 prisms
- Concrete prisms like ASTM C1293 but with NaOH to boost Na₂O_{eq} to 3.0%
- ICP-OES to determine alkali concentrations in autoclave water and pore solution
- IC to determine sulfate concentrations in pore solution
- Petrography to identify reaction product

BUILDING STRONG®

Influence of Cement Alkalinity



Innovative solutions for a safer, better world

U.S.ARMY

ACPT vs. ASTM C1293

Overall Agreement: 85%

Alkali Leaching

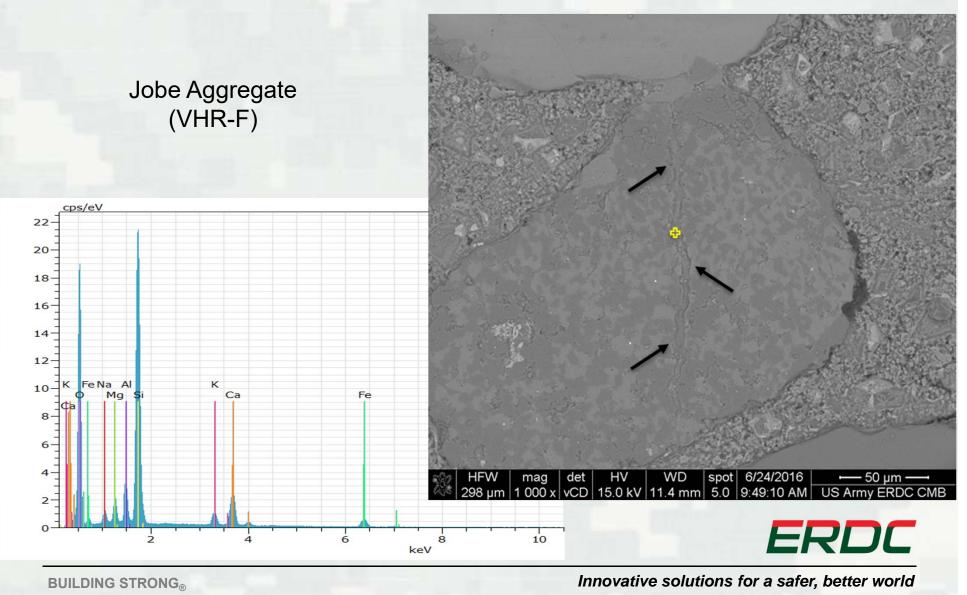
/						
Leached	Autoclave Water Concentration, mg/L			Autoclave	Mixture	
Alkalis, %		Na ₂ O _{eq}	Na⁺	K+	IMIXIUIE	
5.3		476.0	308.5	75.3	NR1-C-A	
5.3		473.4	305.9	76.5	NR3-F-A	
7.9		707.7	403.3	206.8	NR2-F-D	
4.9		435.7	280.5	72.3	NR6-C-B	
4.6		408.4	262.7	68.2	HR1-C-B	
5.1		455.9	299.7	65.0	HR3-C-B	
4.6		408.8	259.7	73.7	HR6-C-B	
10.9		974.4	636.4	146.0	MR3-C-A	
9.0		807.3	518.1	136.7	MR3-C-B	
6.4		574.9	328.9	165.7	MR3-C-D	
4.5		405.9	238.1	107.1	VHR-F-D	
\checkmark		4 to 11%	hing in ACPT =	Alkali Leach		
ER			J			
	Alkalis, % 5.3 5.3 7.9 4.9 4.6 5.1 4.6 5.1 4.6 10.9 9.0 6.4	Alkalis, % 5.3 5.3 7.9 4.9 4.6 5.1 4.6 5.1 4.6 10.9 9.0 6.4	Na2OeqAlkalis, 9 476.0 5.3 473.4 5.3 473.4 5.3 707.7 7.9 435.7 4.9 408.4 4.6 455.9 5.1 408.8 4.6 974.4 10.9 807.3 9.0 574.9 6.4 405.9 4.5	Na*Na2OeqAlkalis, 9 308.5 476.05.3 305.9 473.45.3 403.3 707.77.9 280.5 435.74.9 262.7 408.44.6 299.7 455.95.1 259.7 408.84.6 636.4 974.410.9 518.1 807.39.0 328.9 574.96.4 238.1 405.94.5	K+Na+Na2OeqAlkalis, %75.3308.5476.05.376.5305.9473.45.3206.8403.3707.77.972.3280.5435.74.968.2262.7408.44.665.0299.7455.95.173.7259.7408.84.6146.0636.4974.410.9136.7518.1807.39.0165.7328.9574.96.4	

Innovative solutions for a safer, better world

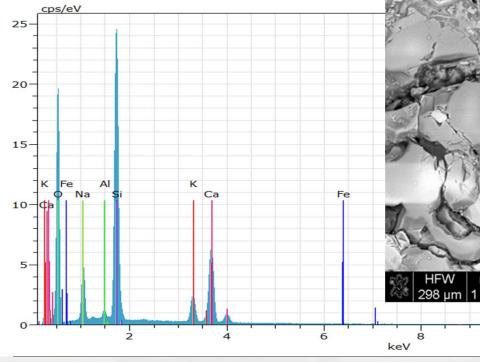
U.S.ARM

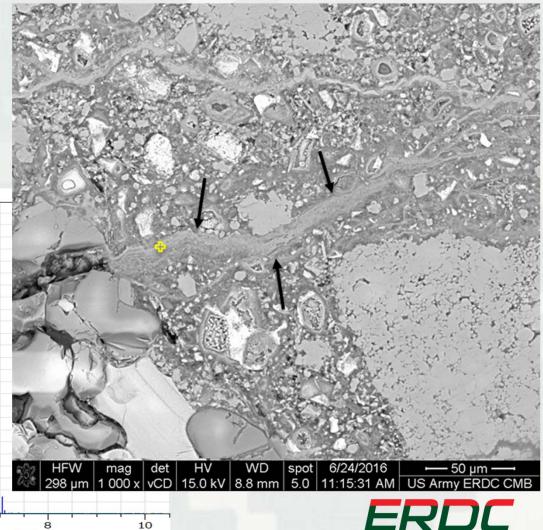
BUILDING STRONG®

Pore Solution Analysis



BUILDING STRONG®


Mixture	[Na ⁺ +K ⁺]	[OH ⁻]	[SO ₄ ²⁻]	[OH ⁻ +2SO ₄ ²⁻]	Average pH
NR1-C-A	1345	468	-	-	13.67
NR3-F-A	1191	423	-	-	13.63
NR2-F-D	1208	423	-	-	13.63
NR6-C-B	1014	427	-		13.63
HR1-C-B	1056	420 ^a	289	998	13.62ª
HR3-C-B	851	360 ª	258	876	13.56ª
HR6-C-B	1404	460 ª	687	1834	13.66ª
MR3-C-A	1162	405 ^b			13.61 ^b
MR3-C-B	1338	430	[Na⁺-	+K⁺] ≠ [OH⁻]	13.63
MR3-C-D	1392	470	-	-	13.67
VHR-F-D	802	387	-	-	13.59
^a Titrated ond ^b Titrated twic		Î	Î		↑ Titration
	ICP-OES	Titration	ic	E	RDC



ASR Reaction Product

Las Placitas Aggregate (HR3-C)

Innovative solutions for a safer, better world

BUILDING STRONG®

Conclusions

- Cement alkalinity had essentially no influence on prism expansion.
- ACPT expansions were, on average, more than twice as large for fine aggregate fractions than for coarse aggregate fractions of the same aggregate
- There was a better correlation between ACPT expansions and ASTM C1293 expansions for coarse aggregates (93%) than for fine aggregates (69%).
- Alkali leaching in the ACPT (4 to 11%) was substantially lower than reported alkali leaching in ASTM C1293 (12 to 25%).
- Measuring [SO₄²⁻] using IC largely resolve the charge imbalance for two of three samples
- SEM/EDX confirmed presence of ASR reaction product in two reactive prisms.

BUILDING STRONG®

Suggested Applications of Autoclave Testing for ASR

ASTM C1778 – Standard Guide for Reducing the Risk of Deleterious Alkali-Aggregate Reaction in Concrete

TABLE 1 Classification of Aggregate Reactivity

Aggregate- Reactivity Class	Description of Aggregate Reactivity	1-Year Expansion in Test Method C1293, %	14-Day Expansion in Test Method C1260, %
R0	Non-reactive	< 0.04	< 0.10
R1	Moderately reactive		≥0.10, <0.30
R2	Highly reactive	≥0.12, <0.24	≥0.30, <0.45
R3	Very highly reactive	≥0.24	≥0.45
Reactivity Class	Description	ACPT (Coarse Aggregates)	Laval/CANME ⁻ (Fine Aggregates)
R0	Non-reactive	< 0.09	< 0.15
R1	Moderately Reactive	≥ 0.09, < 0.12	≥ 0.15, < 0.25
R2	Highly Reactive	≥ 0.12, < 0.15	≥ 0.25
R3 Very Highly Reactive		≥ 0.15	≥ 0.40

TABLE 2 Determining the Level of ASR Risk

Size and Exposure Conditions	Age	Aggregate-Reactivity Class				
Size and Exposure Conditions	R0	R1	R2	R3		
Non-massive ^A concrete in a dry ^B environment	Level 1	Level 1	Level 2	Level 3		
Massive ^A elements in a dry ^B environment	Level 1	Level 2	Level 3	Level 4		
All concrete exposed to humid air, buried or immersed	Level 1	Level 3	Level 4	Level 5		
All concrete exposed to alkalies in service ^C	Level 1	Level 4	Level 5	Level 6		

^A A massive element has a least dimension of greater than 0.9 m [3 ft].

^B A dry environment corresponds to an average ambient relative humidity lower than 60 %, normally only found in the interior of buildings.

^C Examples of structures exposed to alkalies in service include marine structures exposed to seawater and highway structures exposed to deicing salts (for example, NaCl) or anti-icing salts (for example, potassium acetate, sodium formate, and so forth).

Suggested Applications of Autoclave Testing for ASR

TABLE 3 Structures Classified on Basis of the Severity of Consequences Should ASR ⁴ Occur
(Modified for Highway Structures from RILEM TC 191-ARP)

Class	Consequence of ASR	Acceptability of ASB	Examples ^B
Class SC1	Safety, economic, or environmental consequences small or negligible	Some deterioration from ASR may be tolerated	Non-load-bearing elements inside buildings Concrete elements not exposed to moisture Temporary structures (service life < 5 years)
Class SC2	Some safety, economic, or environmental consequences if major deterioration	Moderate risk of ASR is acceptable	Sidewalks, curbs, and gutters Elements with service life < 40 years
Class SC3	Significant safety, economic, or environmental consequences if minor damage	Minor risk of ASR may be acceptable	Pavements Foundations elements Retaining walls Culverts Highway barriers Rural, low-volume roads Precast elements in which economic costs of replacement are severe Service life normally 40 to 74 years
Class SC4	Serious safety, economic, or environmental consequences if minor damage	ASR cannot be tolerated	Major bridges Power plants Dams Nuclear facilities Water treatment facilities Waste water treatment facilities Tunnels Critical elements that are very difficult to inspect or repair Service life normally ≥75 years

^A This table does not consider the consequences of damage as a result of ACR. This protocol does not permit the use of alkali-carbonate aggregates. ^B The types of structures listed under each class are meant to serve as examples. Some owners may decide to use their own classification system. For example, sidewalks, curbs, and gutters may be placed in the SC3 class in some jurisdictions.

IS ARMY

Questions?

Stephanie G. Wood, PhD

Stephanie.G.Wood@usace.army.mil

BUILDING STRONG®

