

The damage in cement pastes exposed to NaCl and CaCl₂ solutions

Chunyu Qiao, Prannoy Suraneni and Jason Weiss Presented by Chunyu Qiao, November 2017

Outline

- Overview
 - Basics of Chemical Reaction: Calcium oxychloride (Ca-Oxy)
 - Phase Diagram Development: Ca(OH)₂-CaCl₂-H₂O system
- Experimental Methods
 - Low temperature differential scanning calorimetry (LT-DSC)
 - Thermogravimetric Analysis (TGA)
 - Ball-on-Three-Balls Test Method (B3B)
- Damage of cement paste exposed to NaCl and CaCl₂ solutions
 - Damage of cement paste in NaCl solutions
 - Damage of cement paste in CaCl₂ solutions
- Summary and Conclusions

Outline

- Overview
 - Basics of Chemical Reaction: Calcium oxychloride (Ca-Oxy)
 - Phase Diagram Development: Ca(OH)₂-CaCl₂-H₂O system
- Experimental Methods
 - Low temperature differential scanning calorimetry (LT-DSC)
 - Thermogravimetric Analysis (TGA)
 - Ball-on-Three-Ball Test Method (B3B)
- Damage of cement paste exposed to NaCl and CaCl₂ solutions
 - Damage of cement paste in NaCl solutions
 - Damage of cement paste in CaCl₂ solutions
- Summary and Conclusions

Overview

- Calcium chloride (CaCl₂)
 can react with calcium
 hydroxide (Ca(OH)₂) to
 form calcium oxychloride.
- This reaction, which is expansive in volume, causes damage, usually seen at the joint.

SP18 I would change "such as joint damage" to "usually seen at the joints" or something like that. Maybe say or have in the slides that this is a huge problem, lots of damage, premature deterioration, etc. Maybe mention that salt is only part of the damage as FT is also part of the damage.

Suraneni, Prannoy, 2017-11-14

Reactions between cement paste and salt solutions

- NaCl solutions: Friedel's (FS) and Kuzel's salt (KS) form due to the reaction with C₃A, Afm.
- CaCl₂ solutions: Other than FS, CaCl₂ reacts with Ca(OH)₂ in cementitious materials.
 - Calcium oxychloride forms due to reaction with Ca(OH)_{2.}

$$\frac{3\text{Ca(OH)}_{2} + \text{CaCl}_{2} + 12\text{H}_{2}\text{O} \rightarrow 3\text{Ca(OH)}_{2} \cdot \text{CaCl}_{2} \cdot 12\text{H}_{2}\text{O}}{\text{Calcium Oxychloride}}$$

Phase Diagram For CaCl₂-H₂0

- CaCl₂-H₂O phase diagram is well known.
- Ice forms as the temperature goes below the liquidus line.
- All solution solidifies below the eutectic temperature.

Phase Isopleth For Ca(OH)₂-CaCl₂-H₂O

- When the solution contains Ca(OH)₂, a new phase is able to form: calcium oxychloride.
- Calcium oxychloride forms when the temperature goes below Ca-Oxy liquidus line.

Farnam et al. 2015; Qiao et al. 2017

Phase Isopleth For Ca(OH)₂-CaCl₂-H₂O

- When the solution contains Ca(OH)₂, a new phase is able to form: calcium oxychloride.
- This phase has some implications on the performance of the system.

Qiao et al. 2017

Outline

- Overview
 - Basics of Chemical Reaction: Calcium oxychloride (Ca-Oxy)
 - Phase Diagram Development: Ca(OH)₂-CaCl₂-H₂O system
- Experimental Methods
 - Low temperature differential scanning calorimetry (LT-DSC)
 - Thermogravimetric Analysis (TGA)
 - Ball-on-Three-Ball Test Method (B3B)
- Damage of cement paste exposed to NaCl and CaCl₂ solutions
 - Damage of cement paste in NaCl solutions
 - Damage of cement paste in CaCl₂ solutions
- Summary and Conclusions

LT-DSC: Quantification of Ca-Oxy

Cement paste is ground and placed in a salt solution.

- Pan is moved into the cell.
- The temperature is decreased from 25 °C to -90 °C, then sample is then reheated.

 Heat flow is measured and used to detect phase changes.

TGA: Quantification of FS

- Cement paste after exposure to NaCl solution is ground.
- The temperature is increased from 23 °C to 500 °C.
- Mass loss is measured and used to quantify the amount of Friedel's salt formed:

$$m_{FS} = \frac{M_{FS}}{6M_{H_2O}} m_{H_2O}$$

Oregon State University

B3B: Strength Reduction in Cement Pastes

- Dimension: 50.8 mm in diameter with a thickness of 2.6 ± 0.2 mm.
- Conditioning:
 - Heating at 50 °C in varying NaCl and CaCl₂ solutions for a week;
 - Cooling in a 5 °C chamber for 2 days;
 - Heating back to 50 °C for 1 day.
- Flexural strength (Borger et al., 2004):
 - $\quad \sigma = f(\alpha, \beta, \nu) \frac{F}{t^2}$

Outline

- Overview
 - Basics of Chemical Reaction: Calcium oxychloride (Ca-Oxy)
 - Phase Diagram Development: Ca(OH)₂-CaCl₂-H₂O system
- Experimental Methods
 - Low temperature differential scanning calorimetry (LT-DSC)
 - Thermogravimetric Analysis (TGA)
 - Ball-on-Three-Ball Test Method (B3B)
- Damage of cement paste exposed to NaCl and CaCl₂ solutions
 - Damage of cement paste in NaCl solutions
 - Damage of cement paste in CaCl₂ solutions
- Summary and Conclusions

NaCl solutions: Friedel's salt

 As NaCl concentration increases, the amount of formed Friedel's salt increases.

(Qiao et al., 2017, submitted)

NaCl solutions: Friedel's salt

- Similar amounts of FS formed in plain cement paste with varying w/cm.
- As fly ash replacement levels increases, the amount of FS increases.

NaCl solutions: Flexural strength

- As w/c increases, the flexural strength reduction increases.
- As fly ash replacement level increases, the flexural strength reduction decreases.

NaCl solutions: Flexural strength

- In the same cement paste, the strength reduction is linearly related to the amount of formed FS.
- In the same NaCl solution, there is no clear relationship between strength reduction and the amount of FS.

CaCl₂ solutions: Ca-0xy

- As the fly ash replacement level increases, the Ca(OH)₂ content decreases.
- Linear relationship between the measured amounts of Ca(OH)₂ & calcium oxychloride.

(Qiao et al., 2017, submitted)

CaCl₂ solutions: Flexural strength College of Engineering

CaCl₂ solutions: Flexural strength College of Engineering

- As w/cm increases, the flexural strength reduction increases.
- As fly ash replacement levels increases, the flexural strength reduction decreases.

More damage than in NaCl solutions!

(Qiao et al., 2017, submitted)

Oregon State University CaCl₂ solutions: Flexural strength College of Engineering

- Volume of calcium oxychloride takes up 303% that of Ca(OH)₂
- Damage is not only due to the volume change, but also related to the crystallization pressure.
- Fitted line does not pass through the origin, may be due to the formation of Friedel's salt and Kuzel's salt, or leaching.

Amount of formed calcium oxychloride (% by weight)

(Qiao et al., 2017, submitted)

Outline

- Overview
 - Basics of Chemical Reaction: Calcium oxychloride (Ca-Oxy)
 - Phase Diagram Development: Ca(OH)₂-CaCl₂-H₂O system
- Experimental Methods
 - Low temperature differential scanning calorimetry (LT-DSC)
 - Thermogravimetric Analysis (TGA)
 - Ball-on-Three-Ball Test Method (B3B)
- Damage of cement paste exposed to NaCl and CaCl₂ solutions
 - Damage of cement paste in NaCl solutions
 - Damage of cement paste in CaCl₂ solutions
- Summary and Conclusions

Summary and conclusions

- Formed Friedel's salt causes damage in cement paste exposed to NaCl solutions.
- Formed calcium oxychloride results in additional damage in cement pastes exposed to CaCl₂ solutions.
- Strength reduction increases as w/cm increases.
- Strength reduction decreases as fly ash replacement level increases.
- It is important to address the thermal history of cementitious materials when analyzing the damage.

References

- Farnam, Y., Dick, S., Wiese, A., Davis, J., Bentz, D., and Weiss, J., "The influence of calcium chloride deicing salt on phase changes and damage development in cementitious materials". Cement and Concrete Composites, 2015. 64: p. 1-15
- Qiao, C., Suraneni, P., and Weiss, J., "Phase diagram and volume change of the Ca(OH)₂-CaCl₂-H₂O system for varying Ca(OH)₂/CaCl₂ molar ratios". *Journal of Materials in Civil Engineering*, 2018. 30(2): p. 04017281
- Monical, J., Unal, E., Barrett, T., Farnam, Y., and Weiss, W.J., "Reducing joint damage in concrete pavements". *Transportation Research Record: Journal of the Transportation Research Board*, 2016. 2577: p. 17-24

References

- Qiao, C., Suraneni, P., and Weiss, J., "Damage in cement pastes exposed to NaCl solutions". Construction and Building Materials, 2018. Under Review
- Cao, Y., Zavaterri, P., Youngblood, J., Moon, R., and Weiss, J., "The influence of cellulose nanocrystal additions on the performance of cement paste". Cement and Concrete Composites, 2015. 56: p. 73-83
- Qiao, C., Suraneni, P., and Weiss, J., "Flexural strength reduction of cement pastes exposed to CaCl2 solutions". *Cement and Concrete Composites*, 2018. 86: p. 297-305

Thank you! Questions?

Email: Jason.Weiss@oregonstate.edu http://cce.oregonstate.edu/deicing-salt

Oregon State University

College of Engineering